Zu § 77 LPO IPhysik (vertieft studiert)

Zu § 77 LPO I

Physik (vertieft studiert)

1. Experimentalphysik

a) Atom/Molekülphysik

Atommodelle, auch quantenmechanisch (insbesondere Quasi-Ein-Elektron-Atome); Atome im Magnetfeld; Wechselwirkung von Licht mit Materie, Laser; Rotations-, Vibrations- und elektronische Anregungen von Molekülen; Auswahlregeln in Atom- und Molekülphysik; einfache Methoden der Atom- und Molekülspektroskopie.

b) Kern/Teilchenphysik

Kernmodelle; Kernzerfälle, -spaltung und -fusion (auch in astrophysikalischem Zusammenhang); Erhaltungssätze und Symmetrien der Teilchenphysik; Elementarteilchen und ihre Wechselwirkungen; Beschleuniger und Detektoren.

c) Festkörperphysik

Struktur und Strukturanalyse von Festkörpern, Bindungsarten, Gitterschwingungen, Elektronen im Festkörper (insbesondere freies Elektronengas, Bändermodell, elektrische Leitfähigkeit), Halbleiterphysik (incl. Dotierung), Supraleitung und Magnetismus (phänomenologisch).

2. Theoretische Physik

a) Mechanik

Bewegungsgleichungen (Newton'sche Mechanik, Lagrange-Gleichungen 2. Art), Hamilton-Funktion, Erhaltungssätze, Drehung um eine feste Achse, einfache relativistische Mechanik (Lorentz-Kontraktion, Eigenzeit, etc.).

b) Elektrodynamik

Maxwell'sche Gleichungen, Elektrostatik (incl. Bildladungen), Magnetostatik, freie Wellenausbreitung, einfache dielektrische und magnetische Materialien.

c) Thermodynamik

Thermodynamische Potentiale, Hauptsätze, Zustandsgleichungen, Prozesse, Boltzmann-Statistik.

d) Quantenmechanik

Schrödinger-Gleichung (auch Matrix-Elemente); eindimensionale Wellenmechanik (stückweise konstante Potentiale, Ortsdarstellung), Zentralpotential, Drehimpuls; zeitunabhängige Störungsrechnung 1. Ordnung; algebraische Behandlung des Oszillators; Interpretation der Quantentheorie, Heisenberg'sche Unschärferelation; elementare Aspekte zum Spin.

3. Fachdidaktik

a) Grundlagen fachbezogenen Lernens und Lehrens

Bildungsziele und Konzeptionen des Physikunterrichts und seine Legitimation, Kompetenzmodelle und Standarddefinitionen; Veranschaulichung von Erkenntnis- und Arbeitsmethoden der Physik; Schülervorstellungen und typische Lernschwierigkeiten, darauf basierende Unterrichtsansätze.

b) Konzeption und Gestaltung von Fachunterricht

Didaktische Reduktion von physikalischen Inhalten; fachspezifische Konzeptionen und Unterrichtsmethoden (insbesondere kumulatives und nachhaltiges Lernen); Planung von Unterricht (auch fachübergreifende Zusammenhänge, Förderung von Interesse).

c) Gestaltung geeigneter Lernumgebungen (insbesondere für selbstgesteuertes und selbsttätiges

fachliches Lernen).